Evidence for the Use of Local Honey for the Relief of Pollen Allergies

by CHRIS FOSTER AND ALYSSA FOSTER

Consumers want to know if honey helps with allergies. Not an hour goes by, at the farmer’s market, before a customer asks if we have ever heard that “local honey helps people with their allergies.” The response, for the past 10 years, has always been “Yes — we hear that a lot and customers swear by it, however, there is little direct evidence to support the claim.” That disclaimer was growing old, so a review of the literature seemed in order. As a result of reading many papers, this skeptic is more confident that some honeys do contain enough hyperallergenic pollen to be of therapeutic value.

What follows is an argument that draws from multiple sources and disciplines to affirm honey’s ability to reduce allergies.

Why don’t we have an answer?

The evidence on this subject does not provide an authoritative answer because very few studies have tested local honey directly, and of those, none have led to a compelling conclusion. Nevertheless, indirect evidence suggests that local honey, containing hyperallergenic pollens, has therapeutic value for those suffering from local pollen allergies.

This is not to say that there is a complete dearth of information, but it appears that empirical data is lacking. Thus, we are left with a popular belief, a substantial amount of anecdotal evidence, a few conflicting questionnaire-based clinical studies, and theoretical considerations suggesting that local honey relieves symptoms of pollinosis.

Short of making absolute claims, an argument can be made that raw local honey is “likely” to reduce symptoms of seasonal allergies if the honey contains the same pollen (or cross-reactive pollen) which caused the allergies in question. Before making the above argument, however, let’s discuss what one would expect from an empirical study.

Clinical study design criteria

Ideally, studies rely on quantified, objective data instead of subjective questionnaire-based trials. For example, a large cohort (matched volunteers) should be recruited based on their objectively confirmed seasonal pollen allergies. Among others, scratch tests, subdermal skin tests, T-cell assays, and antibody assays can be used together to ascertain a subject’s immune status. Along with such tests, there should also be a confirmed correlation by air sampling that subjects are allergic to specific pollens during the time-frame that said pollen is abundant.

Of course, this study would be worthless if the honey wasn’t tested for specific pollens that correlated with the Aero-allergens (airborne allergens) under investigation. In other words, to test the hypothesis that...

---

* Editor’s note: Since some people may be highly allergic to certain pollens, we advise caution when first eating pollen or unfiltered honey containing pollen.

Bee harvesting from knapweed. Photo credit: Bill Wakefield. (www.flickr.com/people/billnbenj)
gestion of honey, containing local pollens, can help reduce symptoms of pollinosis, one would need subjects with unequivocally demonstrated allergies to the same pollens contained in the ingested honey. In addition, patient’s allergies would be monitored with quantitative assays during the study. If such a study has ever been conducted, it is a well-kept secret. Instead, we are left with questionable, questionnaire-based trials.

A paper should be read before it is praised

The one study that pops up in internet searches with key words “local honey & allergies” is a 2002 Annals of Allergy, Asthma, and Immunology article, authored by T.V. Rajan. This paper is critical to this discussion because it appears to be the basis of the countervailing argument found extensively on the internet. The majority of websites that disparage local honey’s ability to relieve hay fever symptoms will reference the Rajan paper as proof that the popular belief is, in fact, myth. As an example, one link (The Health of it all: Honey and Allergies), refutes the therapeutic connection and asserts an implied argument based on authority, “…there is a beautifully designed study performed by Dr. T.V. Rajan at the University of Connecticut…”

Another article, titled “Fact or Fiction? Eating Local Honey Cures Allergies”, claims “the answer is no” and again cites Rajan. Sadly, it appears nobody is reading Rajan’s paper, but only reiterating the paper’s conclusion. Rajan’s conclusion: “This study does not confirm the widely held belief that honey relieves symptoms of allergic rhinoconjunctivitis.” I actually agree with the author, since the study was so poorly conducted and executed that no conclusions could be drawn, whatsoever. After reading the paper, I was utterly amazed that it passed the peer review process. The author himself indicated that he needed a minimum of nine subjects per group (three groups) to be statistically significant, stating “…we targeted at least nine participants per group for this study.” It appears that the study was already underway before anyone realized that only 14 subjects had positive skin tests. Of those 14, only two actually complained of seasonal allergies that correlated with the expected season for specific pollen release.

The author stated, “…we evaluated whether a given subject was experiencing symptoms during the period expected by his/her skin reactivity. For both these subjective analyses, two individuals (LC and TVR) matched the subjective reporting of symptoms with skin reactivity…” Anyone looking at the data should have noticed that the cohort didn’t appear to have a reduction in allergies during the “very low pollen” period, suggesting they were not allergic to seasonal pollens (Rajan, figures 1-4). In reality, only one test subject and, perhaps, one placebo subject, qualified to be in this study.

Wouldn’t it be better to start over again if one ended up with only two qualified participants after admitting that 27 were required (three groups of nine patients)? It’s hard to know whether to laugh or get upset. Think of all the people influenced by this paper who believed that it was based on empirical data when, in fact, it was simply an anecdotal observation.

In addition to having only two subjects, the honey used for the study was never tested for pollen. This would be equivalent to testing a new antihistamine against placebo and then admitting that the antihistamine tablet may have lacked antihistamine. In the final analysis, we have a highly publicized paper showing that untested honey didn’t help one individual subject with his allergies.

The second paper is also inconclusive

A more recent study, by Saarinen, et al., was much better, but it still suffered from the ills of questionnaire-based research. The paper met some of the criteria mentioned earlier for making an objective study, with a skin prick test, air sampling, and honey analysis included. As for numbers, this study had more than one subject; in fact, 50 volunteers completed the study, with 72% of the original 61 recruits testing positive for Birch pollen allergies by a skin prick test. Also, they included air sampling for seasonal pollens and correlated them to patient symptoms. The Saarinen study also tested the honeys for Birch, Alder, and Willow pollen. Unfortunately, bee-collected birch pollen was added to the test honey at concentrations greater than those normally found in an average honey sample.

The author concluded that both local honeys (with and without birch pollen) gave similar levels of allergy relief. That conclusion is difficult to explain without inferring placebo effect. It should be noted, however, that the birch pollen honey (BPH) outperformed the regular local honey (RH) in every symptom category; it just wasn’t statistically significant. One exception was “the number of days not needing allergy medication,” where the BPH was significantly better than the RH (p<0.05). Again, a quantitative assay would have been preferred over questionnaires. In the Saarinen paper, local honey appeared to give considerable allergy relief, compared to no honey, while Rajan’s patient found no such relief from untested honey. Neither result is compelling.

Pollens seem to work

Since objective data is lacking in the application of local honey for allergy relief, perhaps a better case can be made for local pollen administered without honey. There are a number of studies where pollen was shown to relieve symptoms of pollinosis. If pollen can be shown to protect allergy sufferers, then an extrapolation to local honey would require that the honey contain enough hyper-allergenic pollen to elicit a similar level of relief as pure pollen.

It is common knowledge, among beekeepers, that bees collect windborne (anemophilous) pollens: “Anemophilous taxa such as Salix spp. (willow), Quercus spp. (oak), Celastrus spp. (hackberry), many species of grasses (Poaceae), and wind-pollinated types of composites (Asteraceae) are all important pollen sources for foraging honeybees.” It is not enough, however, to say that bees collect anemophilous pollen without demonstrating that the pollen is represented in the honey as well. So any argument suggesting that honey has enough of the right kinds and amounts of pollen would have to make the case that therapeutic levels of hyper-allergenic species make their way into the honey.

Pollens in the hive

Estimates indicate that the amount of pollen collected by an average hive is somewhere between 44 pounds and 125 pounds each year. Put into perspective, it has been estimated that the maximum exposure of a person to the common pollen allergens in ragweed does not exceed 1 lb (millionth of

Bee harvesting from ragweed. Photo credit: Anna Hess. (www.waldbeneffect.org)
Rough estimates supported by severe allergies

The above estimates are admittedly rough because pollen grains vary considerably with seasonal and geographic influences on pollen production. However, if we consider that maize pollen is much larger than a very small pollen grain from a Composite like mugwort, the math would still place the values within a therapeutic range. Evidence for this comes from severe allergic reactions from honey containing mugwort pollen.10,11 The logic here is that an immune response by individuals reacting to mugwort pollen in honey, indicates that there was enough pollen in the honey to be recognized by the host immune system. Luckily, for most of us, ingestion normally leads to a reduction of symptoms rather than severe allergies.

Optimal dose of grass pollen protein is only 15ug

If one considers that a therapeutic preparation of grass pollen protein (Grazax-R) was found to have an optimal sublingual (under the tongue) dose of 15ug per day, it is not a stretch to speculate that milligram quantities of pollen, found in honey, may be protective as well.3 Using the maize example above, 15ug of pollen is equivalent to 60 pollen grains. If the average teaspoon of honey has about 48,000 grains of pollen, it seems reasonable to expect at least 60 grains to be hyper-allergenic. This is not to say that all local honey has enough pollen to be helpful, but it is ‘likely’ that a random spoonful would contain enough allergen to be within the therapeutic range.

Cross-reactive pollen proteins need to be considered

It is also important to note several papers have been published indicating that pollens can be cross-reactive which means that they share protein structures that are common inducers of allergies.5,10,14 This suggests that some honeys may contain more than one pollen species which act together to induce tolerance. For example, birch is cross-reactive with chestnut, while ash is cross-reactive with olive. This list of cross-reactive pollens is quite large. Thus, if one compared local honey to another honey, both may reduce allergy symptoms if they contain cross-reactive allergens from different plant species. Future clinical trials should include testing of volunteers for serum antibodies against the proteins found in both the test and control honeys to eliminate cross-reactivity as a source of error.

SUMMARY

Consumption of local honey is likely to reduce seasonal allergy symptoms

- Honeybee colonies collect 44 to 125 pounds of pollen per year.1 Bees bring pollen into the hive on their pollen baskets and into nectar. Some of the pollen is removed from the nectar, by the bees, but enough remains to average around 20,000 to 100,000 grains per 10 grams of honey.15

12 ounces of pollen collected in one week by a strong colony. Photo credit: Alyssa Foster.
Windborne pollen is collected by honey bees and is present in high enough concentrations to cause allergic reactions in some individuals. Several windborne pollens, identified as Aeroallergens, were abundant in honey. Grass pollen protein has been used optimally at 15°g doses. It is common for honeys to contain hyper-allergenic pollens at concentrations above 15°g/teaspoon. Since local honey probably contains pollen in the "low dose" category (less than 5mg of allergen), it should be administered on a continuous basis. In addition, consumption is best initiated prior to seasonal allergy symptoms by a couple of months. Therefore, the old recommendation of taking a daily spoonful (teaspoon to tablespoon) of honey throughout the year is probably good advice.

Footnotes
10 Manuela Giovannetti and Giovanna Aronne, "Honey bee interest in flowers with anemophilous characteristics: first notes on handling time and routine on Fraxinus ornus and Castanea sativa," Bulletin of Insectology, 2011, 64: 77-82.